Making complex simple – the measure of a great teacher.

solve-the-equationRichard Feynman who featured in last months blog was known as the great explainer. This skill was possible because of two key qualities, the first, an intense curiosity and desire to understand the subject incredibly well and secondly, he could make what was complex seem simple. These are of course not mutually exclusive, deep understanding is the foundation on which simplicity is built.

There was a time when getting access to knowledge was a barrier to learning. After all, how could you learn if you didn’t have the books from which to do it? But we no longer have this problem, knowledge is abundant, it is literally at the end of your fingertips.

The world’s knowledge is just waiting for you to ask the right question. But how can you tell if what your reading is shallow and without thought or deep and profound?

Jardins principle
In 1997 I read an article in the Financial Times written by Rob Eastaway, an English author whose books on everyday maths include Why Do Buses Come in Threes? and The Hidden Maths of Sport. For some reason the concept he outlined always stayed with me, sufficient that I wanted to track it down, which I have managed to do.

Jardin’s Principle as explained by Rob Eastaway. If you are trying to understand any subject or system, your level of understanding will pass through three stages. To start with, the way that you see and describe a system (subject) will be simplistic i.e. over-simplified, then it will become complicated but ultimately it will become simple again. He goes on to add that there are three other words that fit in with this idea, Obvious, Sophisticated and Profound.

Make everything as simple as possible, but not simpler – Albert Einstein

Simple – Complex – Profound
As with all ideas there is more to it, below are what Rob refers to as the 5 caveats. I have added in my own thoughts and observations to some of them.

1. It is hard to differentiate between what is ‘simple and profound’ and what is ‘simplistic and obvious’. This is one of the main problems with a process of reduction, for example if you ask, what is the meaning of life you might be given the answer 42. The problem is in knowing if this is just two numbers written down, snatched out of the air or the correct answer, the result of hundreds of thousands of calculations undertaken over 200 years by the most sophisticated computer in the world?

2. Those at the ‘sophisticated/complicated’ level believe that there is no higher level than theirs – in other words you have to be sophisticated to understand fully. This is a clever observation on human nature, it suggests that some people believe you cannot fully appreciate a concept or idea unless you look at it through the lens of complexity. They effectively give up looking for a simpler perspective, because they don’t know one even exists.

3. You are probably wrong about the level of Jardin that you are at. An example perhaps of fish not seeing water.

4. In order to reach the profound level of understanding you usually pass through the other two levels first. This is my favourite because it shows that the route to simplicity is not easy and requires time and effort. You have to revisit your understanding many times before your brain springs into action with the blindingly obvious.

5. Unless you have a profound understanding of a subject, you will either over-complicate or over-simplify it. Perfect…..

Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end because once you get there, you can move mountains. – Steve Jobs

Great teaching  – Taking something that is complicated and making it appear simple is in many ways the essence of great teaching. Breaking down a subject into easily understood bite sized chunks of information or capturing the whole concept in one single leap by use of a metaphor or simple story is genius. But the process of getting to these pearls of wisdom involves wading through the mire of complexity in some instances for many years before the obvious reveals itself.

What I didn’t know at the time was that Rob had actually made this theory up, he didn’t want to put his own name to it so chose the French word for garden in homage to the Peter Sellers film, Being There, about a simple gardener who becomes US President.

Rob you ask, will it ever stick, maybe you should call it Eastaways folly instead.

Advertisements

The simple Mr Feynman

Feynman

Richard Phillips Feynman was co-awarded the Nobel prize for Physics in 1965 for successfully resolving problems related to the theory of quantum electrodynamics.  No, I’m not sure what that means either. If that was not enough he also helped build the atom bomb, being part of the Manhattan project, and following the Challenger explosion on January 28, 1986 he was the person largely credited with figuring out why it happened.

In fact, Richard Feynman is widely considered to be one of the greatest and most influential theoretical physicists in history. His physics lectures have become world famous. Here is one on the Law of Gravitation.

“I’m smart enough to know that I’m dumb.”

Richard Feynman

He was intensely curious and believed that unless you could explain a concept or idea in simple terms you really didn’t understand it. In this clip Feynman was asked by his father to explain where a photon comes from – listen for his metaphor.

The Feynman technique

Richard Feynman was worried that a lot of people thought they knew something when in fact they only had a superficial grasp of the subject matter.

“You can know the name of that bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about humans in different places, and what they call the bird… I learned very early the difference between knowing the name of something and knowing something.”

Richard P. Feynman

Such was his concern that he created a process to help take an individual’s knowledge to a far deeper and more fundamental level, it’s called the Feynman Technique.

Step 1: Take a sheet of paper and write the name of the concept, topic or subject you would like to learn.

Step 2: Explain the concept in your own words as if you were teaching someone else – see also Protege effect.  Imagine your pupil is a small child, this will help focus your mind on plain, simple language. Don’t limit your explanation to definitions or overviews, challenge yourself, and include lots of examples, which as mentioned in earlier blogs is a great way of making sure you have understood it.

Step 3: Review your explanation and identify the gaps. These might be areas where you simply didn’t have the necessary knowledge or your explanation was weak. Once you have done this go back to your notes or textbook, re-learn the subject matter and add what you have learned to your sheet of paper, then repeat step 2.

“The first person you should be careful not to fool is yourself. Because you are the easiest person to fool”.”

 Richard Feynman

Step 4: Review again and remove technical or overly complex terms, think, “how can I say this more simply?” Also put your notes into an order that flows easily, this might involve rewriting large sections and even starting again with a clean piece of paper, but thats all part of the process. One final tip, as with step 2, it often helps to read out loud.

And that’s it!

I am not saying that if you follow this technique you will win a Nobel prize or be able to play the bongos, another skill that Feynman was famous for, but it will certainly deepen your understanding of the subject, and that’s not a bad start is it!

Richard Feynman: “The Great Explainer” click for an interesting  10-minute summary of his career in science.

The Protege effect – Learning by Teaching

Protege

The Protege effect states that the best way to learn is to teach someone else. Students develop a better understanding and retain knowledge longer than those who study in more traditional ways. The Roman philosopher Seneca put it even more simply ‘While we teach, we learn’.

The method, also called learning by teaching was originally developed by Jean-Pol Martin in the 1980s. Click to watch a short video.

 

There are many theories written about learning and education but the ones that are always most powerful for me are those that you can evidence in some way from your own experiences or from the experiences of others whose opinion you value. And I would be very surprised if any of my teaching colleagues would disagree with the basic concept that no matter how much you think you know about a subject or topic, the very process of teaching always offers up new thoughts and insights, deepening your understanding.

The teacher might be the student

The argument hinges on the relationship between a teacher and learner. Traditionally the teacher is the expert who provides knowledge, the learner the one who receives it, but the teacher need not be the person who stands at the front of class, the teacher can be the student and the student the teacher.

This role reversal is not as odd as it at first might seem, a good teacher will always listen to the answer a student gives in order to evaluate their own performance. And if you think of it like that, who is teaching who?

But how does it work? Imagine you were asked to teach a subject to others in your peer group. Knowing you were going to have to explain a topic will increase your level of engagement with the learning materials. In addition, reflection will be far deeper as you continually ask, does this makes sense to me? This process of preparing, “prepping” is one of the reasons teaching improves learning but there are others. For example, the construction of the learning itself will require imagination and creativity, how exactly will I teach this subject?  It may be a simple verbal explanation, conversational even, or perhaps something more formal, requiring slides or additional illustrations. Once again you will be forced to reflect, possibly writing down some of your ideas and again asking questions, how long will it take, am I making myself clear, what questions could I be asked? Its at this stage that you may even find your understanding lacking, requiring you to go back over what you previously thought you knew.

There is research (Bargh and Schul 1980) to prove that preparing to teach in the belief that you will have to do so improves learning, however there is one final stage, the teaching itself.  In 1993 Coleman, Brown and Rivkin investigated the impact of actually teaching, eliminating the effects resulting from the interaction with students, their conclusions, that there was a significant improvement in performance of those that taught compared to the those who prepared but didn’t in the end teach.

In summary, although thinking you have to teach and going through the process to do so improves learning, following through with the actual teaching is even better.

Protege in practice

Bettys Brain (Vanderbilt University) – Bettys brain is a computer based, Teachable Agent that students can teach and in so doing learn. The students develop a visual map (A concept map) of their own knowledge, forcing them to organise their thoughts. There are resources available within the programme to help them develop a deeper undertesting of the subject. They then teach what they learned to Betty, who like any other student will face a test at the end. If she does not do well in the test it is a reflection of the quality of the teacher or perhaps more precisely their understanding of the subject.

Click here for more details

Lessons for students – This is not a plea for students to pair up and teach each other, as good an idea as this might be. It is a hope that by explaining why teaching helps you learn, it gives an insight into how we all learn. For example, it highlights that reflection, i.e. thinking back on what you know is so important, it shows that high levels of concentration are required, the result of knowing you will have to explain concepts and ideas to others, and it offers up some evidence as to why talking out loud as you do when presenting, consolidates learning.

A few other takeaways, why not imagine you have to teach the subject you are learning and study with a “teaching mindset”. Preparing notes as if you are going to teach, crafting ideas as to how you might explain it to others. Get involved in group discussions, try to answer other student questions as they might answer yours.

Oh, and don’t always assume that the person in front of you fully grasps what they are saying, they are still learning as well.

 

 

 

 

Boring is interesting

One of the reasons a subject might be difficult to learn is because its just very boring…….but is any subject really boring?

boredom11

Why do we get bored?

Firstly, we should define what boredom is, surprisingly for something that many people have experienced and therefore feel they know, definitions are a little vague, for example, from the dictionary we have, “the feeling of being bored by something tedious”, which is not particularly helpful. If we dig a little deeper we find “the aversive experience of wanting but being unable to engage in satisfying activity” or put another way, what you are currently doing is not sufficiently stimulating such that your mind will wander looking for a more satisfying alternative task.

The brain is in effect searching for dopamine, the neurotransmitter that helps control your reward and pleasure centres. The implication being that the task you are currently involved with is not delivering enough dopamine for you to continue with it. There is some evidence to show that people with low levels of dopamine production may get bored easily, continually looking for new and more stimulating activities. This so called “trait boredom” has been linked to dropping out of school, higher levels of anxiety, gambling and alcohol/drug abuse.

Boredom is an emotion often brought on by routine, monotonous and repetitive work that has little perceived value.

The opposite of boredom is engagement

On the basis that being bored is not a particularly good emotion when it comes to learning we should look to change it by becoming more engaged. One small but important point before we move on, being bored is not completely without its uses, watch this TED lecture – How boredom can lead to your most brilliant ideas, presented by Manoush Zomorodi. In this Manoush argues that because the brain is searching for stimulation when bored, it can lead to increased creativity and great ideas.

An interesting way of thinking of engagement is that it’s what you see when someone is motivated.  This is important if you want to pass an exam because there is evidence (Wang & Eccles, 2012a) to show that students who are engaged are more likely to do well in examinations and aspire to higher education.

But what to do?

  • Recognise that you are feeling bored. This is the first step because if you don’t know your bored its easy to build up a deep dislike for the subject, and when you do that the answer becomes easy. It’s not my fault, it’s the subject that’s boring.
  • Your subject needs to be meaningful. Students often say, “I will never use what I have to learn.” This is of course an opinion; the truth is you simply don’t know. I can still remember thinking I would never need to understand the Capital Asset Pricing Model (a formula used in Financial Management to calculate shareholder returns) little did I know one day I would actually teach it.
  • Be curious, keep thinking, “that’s interesting”. Nothing is really boring it’s only the way you are looking at it. Curiosity is a state of mind that fortunately has is no cure.

The cure for boredom is curiosity. There is no cure for curiosity.    Ellen Parr

  • Make it fun or turn the activity into a game.  There is no doubt that during your studies there will be a need to rote learn information and because this is a repetitive task it can be boring. But if you break up what you have to learn into bite size chunks and turn it into a game with rewards e.g. if I learn these 4 definitions by 6.00 I can finish for the day, you will be amazed how much easier it can become.
  • Find people who are engaged and ask them to explain what they see, why do they find it interesting. This might be necessary if your teacher or lecturer fails to bring the subject to life, fails to engage you in the subject. Interest and engagement are contagious, unfortunately so is boredom.
  • Its too easy – its too hard. Your boredom might come from the fact that what your learning is basic, if so ask for more advanced work, I know that sounds counter intuitive but you will benefit in the long run. And if its too hard, speak to your teacher, they will be able to help. This is an example of taking control, often boredom strikes when you feel there is nothing you can do, sitting waiting for a train that has been delayed. By taking some form of control e.g. checking alternative routes home, the boredom will pass.

And if you want to find out more

Why Do We Get Bored? 

On the Function of Boredom

The Unengaged Mind: Defining Boredom in Terms of Attention

The science of Learning – Top six proven study techniques (Part two )

Welcome to part two, exploring the facts and what really works in learning.

Elaboration

Eliot Hirshman defined elaboration as “a conscious, intentional process that associates to-be-remembered information with other information in memory. In other words adding something new to what you already know e.g. elaborating. There are a number of variations as to how this concept might be used but one is called elaborative interrogation, and involves students questioning the materials they are studying. This might be students asking “how and why” questions in groups and answering them either from their course materials or ideally memory. This technique can also be used by a student studying alone, outside of the classroom, a kind of loud self enquiry.

Although the science on exactly how effective some of these ideas are is not conclusive, I would argue that many teachers I have met learn a great deal by saying something out loud to a class, in some instances many times, and then asking themselves challenging questions, e.g. “if it works in this situation why won’t it work now”? The truth is it is often the student who asks the challenging question!

Concrete examples

Concrete examples make something easier to understand and remember, largely because the brain can both recognise and recall concrete words more readily than abstract ones. In addition it has been demonstrated that information that is more concrete and imageable enhances the learning of associations, even with abstract content.

What you have just read to a certain extent is a group of abstract words, easier for example, easier than what? But if we added that it was easier than eating an apple? Although the experience of eating an apple may vary, everyone knows what an apple looks, smells and tastes like.

A concrete term refers to objects or events we can see or hear or feel or taste or smell.

By using concrete examples it makes it much easier to concisely convey information, that can be remembered and visualised. It is a good example of Dual coding.

Duel coding

Few people would disagree with the idea that pictures are more memorable than words, this is referred to as the picture superiority effect. Dual coding supports this by suggesting that text when accompanied by complementary visual information enhances learning. It is important to be clear, dual coding is the use of both text and visuals, replacing a word with a picture is not the same.

In addition there is some evidence to suggest that by adding a movement such as drawing something rather than showing the static image can enhance the process even more.

One final point that I have written about many times before, duel coding should not be confused with learning styles. This is not suggesting that some people will “get” duel coding” because it fits with their learning styles, it works for everyone.

Well that’s it six of the top learning techniques that you can use with confidence and are proven to work.

See you next month, I am just off to enjoy a concrete experience, Clam Chowder on Pier 39.

The science of Learning – Top six proven study techniques (Part one)

Brain in jar

One of the most difficult questions to answer is – “How do you know”? This is because it challenges both the logic behind your thinking and the quality of information on which you based your statement or opinion. Is it possible you have taken reliable information and put it together in the wrong way or is the evidence supporting your argument questionable?

Saying something with confidence will lead people to believe that what you are saying is true but without real evidence it is still only an opinion.

The so called scientific method which introduced us to the idea of gathering evidence cannot be attributed to one individual, the high-profile contributors include Aristotle, Ibn al-Haytham, Descartes and Newton. It was clearly an organic process that Newton eloquently described as standing upon the shoulder of giants.

Regardless of the originator, the scientific method has changed the way we think and shaped much of the modern world, from discoveries in medicine, putting a man on the moon and the creation of the internet. But……Not Learning.

Learning science

Although still a relatively new field there are a group of individuals who include cognitive and computer scientists, linguists and educational phycologists who collectively call themselves Learning Scientists. By gathering evidence in the form of data about how students learn they have been able to draw conclusions that are “evidence based”. What can be proven and what cannot. For both students and teachers their findings should be essential reading.

One important point, this does not in any way detract from what a good teacher does, no more than offering advice to doctors on the evidence supporting the success of a new drug.

The top 6 evidence-based study techniques

1. Spaced practice (distributed)

Spaced practice is the exact opposite of cramming, you are effectively taking the same amount of time to study, just doing it over a longer period of time. The evidence shows that if you revisit what you have studied over time it boosts what is called your retrieval and storage strength but if you study in a short period of time, your retrieval strength improves but your storage strength reduces. One implication is that cramming can work but only if you want to retain information for a short period of time, to pass an exam for example. As such it is understandable why students do this, because they have proved in the past it was successful.  If, however you need that information for the next level of study, you may need to learn it all over again!

“The effect is simple: the same amount of repeated studying of the same information spaced out over time will lead to greater retention of that information in the long run, compared with repeated studying of the same information for the same amount of time in one study session.”

Watch this video, it’s an excellent summary.

2. Interleaving

Interleaving is simply studying different subjects or topics as opposed to studying one topic very thoroughly before moving to the next, this latter process is called blocking. However as with spaced practice students might find it harder (see desirable difficulty) because interleaving involves retrieval practice and is more difficult than blocked practice, but the knowledge is retained for far longer. One proven technique is for students to alternate between attempting a problem and viewing a worked example. This is much better than attempting to answer one question after another. Its simply about switching activity.

But be careful, interleaving is best done within a subject, don’t move from Chemistry to Art for example. Unfortunately we don’t have any evidence as to what the optimum time period should be, so that might have to come down to trial and error. If however its too short a time there is a danger you will effectively be multitasking, and as I have mentioned in a previous blog, that simply doesn’t work.

This video by brain hack is excellent

“Interleaving occurs when different ideas or problem types are tackled in a sequence, as opposed to the more common method of attempting multiple versions of the same problem in a given study session, known as blocking.”

3. Retrieval practice

This may come as no surprise to many students and certainly not to anyone who reads this blog, its true testing actually improves memory. The process of reflecting back and having to retrieve a memory of something previously learned is very powerful.  There is also an added benefit, if you are told there is going to be a test, the increased test expectancy leads to better-quality encoding of the new information.

One concern is that while there is little doubt that retrieval practice works, there is some research to show that pressure, perhaps the result of test anxiety during retrieval can undermine some of the learning benefit.

“However, we know from a century of research that retrieving knowledge actually strengthens it.”

Part two, next month

I hope this insight into evidence based learning has been useful, next month I will cover Elaboration, Concrete examples and Dual coding.

And if you would like to find out more here is a link to the article that quotes much of the research to support these techniques.

Case study – Omelettes and Cognitivism

1774_making_summer_sausage_omelette

If you have actually got as far as reading this first paragraph, there must have been something in the title that caught your attention. Perhaps you were simply curious as to how these three words are connected, or maybe one of the words relates to something you are interested in?

Whatever the reason, you have begun to process information and so engage in cognition, put more simply, you have started to think.

Making an omelette

But first a question, take a moment and think about how you make an omelette? ……….Then in your own words, explain how you would do this? ………. As you might imagine this is not about the omelette but the process you went through in order to answer the question.

The process – There was clearly an element of memory and recall as you thought back to the time when you last made an omelette, you would also have needed to direct your attention to the event itself and use strong visualisation skills, to see yourself actually whisking the egg, adding the salt and pepper etc. However so sophisticated is the human mind you can actually create images of making an omelette based on your knowledge of scrambling an egg! The point being, you have the ability to visualise activities of which you have no or little experience. The mental processes outlined above go some way to explaining Cognitivism. Cognitivism in learning is the study of how information is received, directed, organised, stored and perceived in order to facilitate better learning. Cognitivist believe that mental processes should be studied in order to develop better theories as to how people learn.

Case study is higher level

As you progress up the exam ladder the style of examination question changes. It starts with relatively simple activities that require you to recall something already taught e.g. what is the capital of France? It then moves to questions that test understanding, e.g. explain why Paris is the capital of France? At higher levels you will ultimately come across, Application, Analyse and Evaluation, and it is these higher level skills that a case studies often requires you to master.

I have written about case studies before, firstly, Putting the context into case study and secondly Passing case studies by thinking in words. Here I want to explore how by understanding how people think  (Cognitivism) you can develop strategies to help you answer what seem to be impossible questions.

Application of knowledge

Imagine you have been given a case study that has a large amount of information about the company, the people and the financial position. You have been asked to offer advise as to how the company should improve its internal controls within the HR department. Even though you may not think you know the answer, the process outlined above will give a framework to follow.

  • Firstly, focus your attention on the key words – internal controls and HR deportment
  • Secondly, recall any information you have about internal controls and HR departments
  • Thirdly, deploy strong visualisation skills, seeing yourself in that company, bringing in as much detail as possible to give context, and then use common sense
  • Finally write out your answer – Say what you see, talk through how you would do it, mention some of the problems you might experience and outline the possible solutions

These are cognitive strategies developed from learning more as to how people think, why not give them a go?

And here is how to make an omelette from my favourite instructor, Delia – yet another practical tip, remember last month it was how to make toast.