The simple Mr Feynman


Richard Phillips Feynman was co-awarded the Nobel prize for Physics in 1965 for successfully resolving problems related to the theory of quantum electrodynamics.  No, I’m not sure what that means either. If that was not enough he also helped build the atom bomb, being part of the Manhattan project, and following the Challenger explosion on January 28, 1986 he was the person largely credited with figuring out why it happened.

In fact, Richard Feynman is widely considered to be one of the greatest and most influential theoretical physicists in history. His physics lectures have become world famous. Here is one on the Law of Gravitation.

“I’m smart enough to know that I’m dumb.”

Richard Feynman

He was intensely curious and believed that unless you could explain a concept or idea in simple terms you really didn’t understand it. In this clip Feynman was asked by his father to explain where a photon comes from – listen for his metaphor.

The Feynman technique

Richard Feynman was worried that a lot of people thought they knew something when in fact they only had a superficial grasp of the subject matter.

“You can know the name of that bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about humans in different places, and what they call the bird… I learned very early the difference between knowing the name of something and knowing something.”

Richard P. Feynman

Such was his concern that he created a process to help take an individual’s knowledge to a far deeper and more fundamental level, it’s called the Feynman Technique.

Step 1: Take a sheet of paper and write the name of the concept, topic or subject you would like to learn.

Step 2: Explain the concept in your own words as if you were teaching someone else – see also Protege effect.  Imagine your pupil is a small child, this will help focus your mind on plain, simple language. Don’t limit your explanation to definitions or overviews, challenge yourself, and include lots of examples, which as mentioned in earlier blogs is a great way of making sure you have understood it.

Step 3: Review your explanation and identify the gaps. These might be areas where you simply didn’t have the necessary knowledge or your explanation was weak. Once you have done this go back to your notes or textbook, re-learn the subject matter and add what you have learned to your sheet of paper, then repeat step 2.

“The first person you should be careful not to fool is yourself. Because you are the easiest person to fool”.”

 Richard Feynman

Step 4: Review again and remove technical or overly complex terms, think, “how can I say this more simply?” Also put your notes into an order that flows easily, this might involve rewriting large sections and even starting again with a clean piece of paper, but thats all part of the process. One final tip, as with step 2, it often helps to read out loud.

And that’s it!

I am not saying that if you follow this technique you will win a Nobel prize or be able to play the bongos, another skill that Feynman was famous for, but it will certainly deepen your understanding of the subject, and that’s not a bad start is it!

Richard Feynman: “The Great Explainer” click for an interesting  10-minute summary of his career in science.



There are a number of terms that crop up continually in learning, motivation, attention, inspiration, concentration, curiosity etc. But one that is becoming increasingly important especially for those students studying online, is engagement.

Many of the above terms are closely related and often used in the same sentence, but by taking some of them we can make an attempt at defining engagement – the degree of attention, curiosity, interest and passion demonstrated when learning.

Types of engagement

However when you look into any subject in detail it’s never as easy as you first thought. Fredricks, Blumenfeld and Paris identified three types or as they called them dimensions of engagement:

1. Behavioural engagement e.g. attendance, involvement and absence of disruptive or negative behaviour.

2. Emotional engagement e.g. interest, enjoyment, or a sense of belonging.

3. Cognitive engagement e.g. invested in learning, seek to go beyond the requirements and relish a challenge. A cognitively engaged student can become unaware of time and will be capable of taking the subject matter outside its context, form new connections and begin asking questions in order to ensure they have fully understood.

In simple terms an engaged student is physically, emotionally and mentally present.

Why is it important?

There is a large body of evidence that shows correlation between high levels of engagement and a number of desirable learning based outcomes, for example improved critical thinking, cognitive development, skills transfer, self-esteem, deeper understanding and better *exam results. It’s also worth adding that an engaged student is more likely to complete the course.

If you are not engaged, then what are you doing?

Engagement clearly helps students learn more effectively but it is also closely linked to motivation. In fact the expression motivated and engaged are sometimes used as if they were the same, but there is a subtle difference. I have written about motivation many times and unlike engagement tends to be more long term, possibly internal and certainly goal orientated. You can of course be engaged but not motivated, for example engaged in an activity, perhaps concentrating and interested but it’s not a topic or subject that you feel is important and have no long term need or desire to find out more. Engagement is the response to an external and immediate satisfaction, entertainment, curiosity, or recognition.

How to engage – for the teacher

As with motivation, it’s better to be engaged than not, so before we answer the question, what can teachers do to engage their students, it’s worth noting the role of the student, if you sit with your arms folded thinking of something else, you won’t engage.

  • Make it relevant – outline before you start why this topic is important for your audience. How is this online session going to help the students achieve their objectives, try to be specific.
  • Use real world examples – related to the above, a real world example can help the student appreciate the importance of what they are learning, i.e. if it’s used in the real world it must work. This may result in the student asking questions internally as to how it might work in their organisation or concluding that it will not.
  • Positive reinforcement – praise may sometimes feel artificial and of course should not be given all of the time, but recognising the difficulty of a task and congratulating everyone for doing well is both motivational and engaging.
  • Build rapport – use student names to help personalise the process. Break down barriers by saying what you personally find difficult, and perhaps why. If you can empathise with the student it helps build rapport, which makes it more likely they will listen and follow your advise.
  • Inspire – not everyone will think of themselves as inspirational but in some ways it takes very little, a simple story that means something to you can do the trick. Simon Sinek suggests that inspirational leaders know their WHY, they know why the are doing something. Ask what’s your why, and it’s not just because it’s your job, it’s because it’s your passion and fits with your personal beliefs.
  • Inclusive activities – plan for a number of activities that will encourage the group to engage with each other, the subject matter and you. These can be as simple as asking questions, setting quizzes, polls, or more involved, such as break out groups. Importantly the activities should not be easy, they need to be challenging, bored students are not engaged.
  • Manage and facilitate, don’t tell, ask – try to get the students thinking, ask them why, do you all agree, is there an alternative answer? It’s also a good idea to encourage students to think and believe in themselves, to become independent and autonomous learners.

And one last tip, make it short and don’t go on too long or labour a point, there is a danger your students will disengage!

Which is probably my queue to bring this to an end and wish you all a Merry Xmas.

*improved grades (Astin 1977, 1993; Indiana University Center for Postsecondary Research 2002; Pike, Schroeder & Berry 1997; Tross, Hpersistencearper Osher & Kneidinger 2000)

Cramming works, but only until tomorrow


I have written about cramming before or to be precise it was in the title of a previous blog but the main focus was on the benefits of attempting exam questions. As a result, I feel I should say far more about what many students reluctantly admit is their most commonly used study method.

Cramming is the process of leaving everything until the last minute and then studying intensely in a relatively short period of time. Students know they shouldn’t do it and yet the “cramming badge of honour” is often worn with pride. It is accompanied by the boast, “anyway I work better under pressure”.

Better under pressure

Yerkes and Dodson (Yerkes-Dodson Law) famously put rats in a maze and administered electric shocks as they attempted to choose between a black and white door. They noticed that mild shocks improved the rats’ performance until a certain point, after which it greatly decreased. A chart of the shock strength versus performance takes the shape of an inverted U. And although there has been some criticism as to the exact findings, the concept that people perform better under pressure is true but only to a point, and of course judging when that point is reached is personal and arguably impossible.

The conclusion therefore has to be that creating a stressful situation by leaving everything until the last minute is not a particularly sensible strategy. An exam environment brings its own high level of stress without you having to manufacture your own.

Back to cramming

In June and July, I identified 6 scientifically proven learning strategies, and it is here that we can find the answer to the question, does cramming work?

Spaced practice is the process of studying over time compared with studying the same content but intensely at the end, normally prior to a test. The results as to which one is best is conclusive, spacing your learning is far better because you will not only improve what is called retrieval strength but also storage strength. The implications being that you will you be able to recall what you have learned quickly and the information will be stored waiting for when you might need it in the future.

However, studying at the end, effectively cramming also works, it has to, students have been using this method of revising since the very first exam. But, and there is a but, it only helps with retrieval strength, that is you will only be able to retrieve the information for a short period of time, perhaps as little as a day. Should you want to recall what you learned at some point in the future it won’t be there. The reason, a short burst constantly topped up will keep the information in short term memory but due to the lack of time the brain is unable to consolidate what you have learned, effectively taking it into long term memory. There is some evidence to support the view that this consolidation takes place when you are a sleep, something else that students who cram often don’t get, but that is a sufficiently large enough topic it would need a future blog.


Cramming does work for short term chunks of information for example formulas, key words that remind you of knowledge stored in long term memory, formats, illustrations etc. Simple memory techniques such as acronyms and acrostics are great and should be used, they are part of the tool kit of a professional student. But they are in addition to a more structured and spaced out way of learning, not an alternative.

Here are a few more resources.

This past blog gives specific advice – Twas the night before ………..the exam – but what to do?

Video (5m) – How to: Cram the night before a test and PASS – This is worth watching 472, 000 others have.

Video (2.5m) – How to Cram for a Test.


The Protege effect – Learning by Teaching


The Protege effect states that the best way to learn is to teach someone else. Students develop a better understanding and retain knowledge longer than those who study in more traditional ways. The Roman philosopher Seneca put it even more simply ‘While we teach, we learn’.

The method, also called learning by teaching was originally developed by Jean-Pol Martin in the 1980s. Click to watch a short video.


There are many theories written about learning and education but the ones that are always most powerful for me are those that you can evidence in some way from your own experiences or from the experiences of others whose opinion you value. And I would be very surprised if any of my teaching colleagues would disagree with the basic concept that no matter how much you think you know about a subject or topic, the very process of teaching always offers up new thoughts and insights, deepening your understanding.

The teacher might be the student

The argument hinges on the relationship between a teacher and learner. Traditionally the teacher is the expert who provides knowledge, the learner the one who receives it, but the teacher need not be the person who stands at the front of class, the teacher can be the student and the student the teacher.

This role reversal is not as odd as it at first might seem, a good teacher will always listen to the answer a student gives in order to evaluate their own performance. And if you think of it like that, who is teaching who?

But how does it work? Imagine you were asked to teach a subject to others in your peer group. Knowing you were going to have to explain a topic will increase your level of engagement with the learning materials. In addition, reflection will be far deeper as you continually ask, does this makes sense to me? This process of preparing, “prepping” is one of the reasons teaching improves learning but there are others. For example, the construction of the learning itself will require imagination and creativity, how exactly will I teach this subject?  It may be a simple verbal explanation, conversational even, or perhaps something more formal, requiring slides or additional illustrations. Once again you will be forced to reflect, possibly writing down some of your ideas and again asking questions, how long will it take, am I making myself clear, what questions could I be asked? Its at this stage that you may even find your understanding lacking, requiring you to go back over what you previously thought you knew.

There is research (Bargh and Schul 1980) to prove that preparing to teach in the belief that you will have to do so improves learning, however there is one final stage, the teaching itself.  In 1993 Coleman, Brown and Rivkin investigated the impact of actually teaching, eliminating the effects resulting from the interaction with students, their conclusions, that there was a significant improvement in performance of those that taught compared to the those who prepared but didn’t in the end teach.

In summary, although thinking you have to teach and going through the process to do so improves learning, following through with the actual teaching is even better.

Protege in practice

Bettys Brain (Vanderbilt University) – Bettys brain is a computer based, Teachable Agent that students can teach and in so doing learn. The students develop a visual map (A concept map) of their own knowledge, forcing them to organise their thoughts. There are resources available within the programme to help them develop a deeper undertesting of the subject. They then teach what they learned to Betty, who like any other student will face a test at the end. If she does not do well in the test it is a reflection of the quality of the teacher or perhaps more precisely their understanding of the subject.

Click here for more details

Lessons for students – This is not a plea for students to pair up and teach each other, as good an idea as this might be. It is a hope that by explaining why teaching helps you learn, it gives an insight into how we all learn. For example, it highlights that reflection, i.e. thinking back on what you know is so important, it shows that high levels of concentration are required, the result of knowing you will have to explain concepts and ideas to others, and it offers up some evidence as to why talking out loud as you do when presenting, consolidates learning.

A few other takeaways, why not imagine you have to teach the subject you are learning and study with a “teaching mindset”. Preparing notes as if you are going to teach, crafting ideas as to how you might explain it to others. Get involved in group discussions, try to answer other student questions as they might answer yours.

Oh, and don’t always assume that the person in front of you fully grasps what they are saying, they are still learning as well.





Boring is interesting

One of the reasons a subject might be difficult to learn is because its just very boring…….but is any subject really boring?


Why do we get bored?

Firstly, we should define what boredom is, surprisingly for something that many people have experienced and therefore feel they know, definitions are a little vague, for example, from the dictionary we have, “the feeling of being bored by something tedious”, which is not particularly helpful. If we dig a little deeper we find “the aversive experience of wanting but being unable to engage in satisfying activity” or put another way, what you are currently doing is not sufficiently stimulating such that your mind will wander looking for a more satisfying alternative task.

The brain is in effect searching for dopamine, the neurotransmitter that helps control your reward and pleasure centres. The implication being that the task you are currently involved with is not delivering enough dopamine for you to continue with it. There is some evidence to show that people with low levels of dopamine production may get bored easily, continually looking for new and more stimulating activities. This so called “trait boredom” has been linked to dropping out of school, higher levels of anxiety, gambling and alcohol/drug abuse.

Boredom is an emotion often brought on by routine, monotonous and repetitive work that has little perceived value.

The opposite of boredom is engagement

On the basis that being bored is not a particularly good emotion when it comes to learning we should look to change it by becoming more engaged. One small but important point before we move on, being bored is not completely without its uses, watch this TED lecture – How boredom can lead to your most brilliant ideas, presented by Manoush Zomorodi. In this Manoush argues that because the brain is searching for stimulation when bored, it can lead to increased creativity and great ideas.

An interesting way of thinking of engagement is that it’s what you see when someone is motivated.  This is important if you want to pass an exam because there is evidence (Wang & Eccles, 2012a) to show that students who are engaged are more likely to do well in examinations and aspire to higher education.

But what to do?

  • Recognise that you are feeling bored. This is the first step because if you don’t know your bored its easy to build up a deep dislike for the subject, and when you do that the answer becomes easy. It’s not my fault, it’s the subject that’s boring.
  • Your subject needs to be meaningful. Students often say, “I will never use what I have to learn.” This is of course an opinion; the truth is you simply don’t know. I can still remember thinking I would never need to understand the Capital Asset Pricing Model (a formula used in Financial Management to calculate shareholder returns) little did I know one day I would actually teach it.
  • Be curious, keep thinking, “that’s interesting”. Nothing is really boring it’s only the way you are looking at it. Curiosity is a state of mind that fortunately has is no cure.

The cure for boredom is curiosity. There is no cure for curiosity.    Ellen Parr

  • Make it fun or turn the activity into a game.  There is no doubt that during your studies there will be a need to rote learn information and because this is a repetitive task it can be boring. But if you break up what you have to learn into bite size chunks and turn it into a game with rewards e.g. if I learn these 4 definitions by 6.00 I can finish for the day, you will be amazed how much easier it can become.
  • Find people who are engaged and ask them to explain what they see, why do they find it interesting. This might be necessary if your teacher or lecturer fails to bring the subject to life, fails to engage you in the subject. Interest and engagement are contagious, unfortunately so is boredom.
  • Its too easy – its too hard. Your boredom might come from the fact that what your learning is basic, if so ask for more advanced work, I know that sounds counter intuitive but you will benefit in the long run. And if its too hard, speak to your teacher, they will be able to help. This is an example of taking control, often boredom strikes when you feel there is nothing you can do, sitting waiting for a train that has been delayed. By taking some form of control e.g. checking alternative routes home, the boredom will pass.

And if you want to find out more

Why Do We Get Bored? 

On the Function of Boredom

The Unengaged Mind: Defining Boredom in Terms of Attention

The science of Learning – Top six proven study techniques (Part two )

Welcome to part two, exploring the facts and what really works in learning.


Eliot Hirshman defined elaboration as “a conscious, intentional process that associates to-be-remembered information with other information in memory. In other words adding something new to what you already know e.g. elaborating. There are a number of variations as to how this concept might be used but one is called elaborative interrogation, and involves students questioning the materials they are studying. This might be students asking “how and why” questions in groups and answering them either from their course materials or ideally memory. This technique can also be used by a student studying alone, outside of the classroom, a kind of loud self enquiry.

Although the science on exactly how effective some of these ideas are is not conclusive, I would argue that many teachers I have met learn a great deal by saying something out loud to a class, in some instances many times, and then asking themselves challenging questions, e.g. “if it works in this situation why won’t it work now”? The truth is it is often the student who asks the challenging question!

Concrete examples

Concrete examples make something easier to understand and remember, largely because the brain can both recognise and recall concrete words more readily than abstract ones. In addition it has been demonstrated that information that is more concrete and imageable enhances the learning of associations, even with abstract content.

What you have just read to a certain extent is a group of abstract words, easier for example, easier than what? But if we added that it was easier than eating an apple? Although the experience of eating an apple may vary, everyone knows what an apple looks, smells and tastes like.

A concrete term refers to objects or events we can see or hear or feel or taste or smell.

By using concrete examples it makes it much easier to concisely convey information, that can be remembered and visualised. It is a good example of Dual coding.

Duel coding

Few people would disagree with the idea that pictures are more memorable than words, this is referred to as the picture superiority effect. Dual coding supports this by suggesting that text when accompanied by complementary visual information enhances learning. It is important to be clear, dual coding is the use of both text and visuals, replacing a word with a picture is not the same.

In addition there is some evidence to suggest that by adding a movement such as drawing something rather than showing the static image can enhance the process even more.

One final point that I have written about many times before, duel coding should not be confused with learning styles. This is not suggesting that some people will “get” duel coding” because it fits with their learning styles, it works for everyone.

Well that’s it six of the top learning techniques that you can use with confidence and are proven to work.

See you next month, I am just off to enjoy a concrete experience, Clam Chowder on Pier 39.

The science of Learning – Top six proven study techniques (Part one)

Brain in jar

One of the most difficult questions to answer is – “How do you know”? This is because it challenges both the logic behind your thinking and the quality of information on which you based your statement or opinion. Is it possible you have taken reliable information and put it together in the wrong way or is the evidence supporting your argument questionable?

Saying something with confidence will lead people to believe that what you are saying is true but without real evidence it is still only an opinion.

The so called scientific method which introduced us to the idea of gathering evidence cannot be attributed to one individual, the high-profile contributors include Aristotle, Ibn al-Haytham, Descartes and Newton. It was clearly an organic process that Newton eloquently described as standing upon the shoulder of giants.

Regardless of the originator, the scientific method has changed the way we think and shaped much of the modern world, from discoveries in medicine, putting a man on the moon and the creation of the internet. But……Not Learning.

Learning science

Although still a relatively new field there are a group of individuals who include cognitive and computer scientists, linguists and educational phycologists who collectively call themselves Learning Scientists. By gathering evidence in the form of data about how students learn they have been able to draw conclusions that are “evidence based”. What can be proven and what cannot. For both students and teachers their findings should be essential reading.

One important point, this does not in any way detract from what a good teacher does, no more than offering advice to doctors on the evidence supporting the success of a new drug.

The top 6 evidence-based study techniques

1. Spaced practice (distributed)

Spaced practice is the exact opposite of cramming, you are effectively taking the same amount of time to study, just doing it over a longer period of time. The evidence shows that if you revisit what you have studied over time it boosts what is called your retrieval and storage strength but if you study in a short period of time, your retrieval strength improves but your storage strength reduces. One implication is that cramming can work but only if you want to retain information for a short period of time, to pass an exam for example. As such it is understandable why students do this, because they have proved in the past it was successful.  If, however you need that information for the next level of study, you may need to learn it all over again!

“The effect is simple: the same amount of repeated studying of the same information spaced out over time will lead to greater retention of that information in the long run, compared with repeated studying of the same information for the same amount of time in one study session.”

Watch this video, it’s an excellent summary.

2. Interleaving

Interleaving is simply studying different subjects or topics as opposed to studying one topic very thoroughly before moving to the next, this latter process is called blocking. However as with spaced practice students might find it harder (see desirable difficulty) because interleaving involves retrieval practice and is more difficult than blocked practice, but the knowledge is retained for far longer. One proven technique is for students to alternate between attempting a problem and viewing a worked example. This is much better than attempting to answer one question after another. Its simply about switching activity.

But be careful, interleaving is best done within a subject, don’t move from Chemistry to Art for example. Unfortunately we don’t have any evidence as to what the optimum time period should be, so that might have to come down to trial and error. If however its too short a time there is a danger you will effectively be multitasking, and as I have mentioned in a previous blog, that simply doesn’t work.

This video by brain hack is excellent

“Interleaving occurs when different ideas or problem types are tackled in a sequence, as opposed to the more common method of attempting multiple versions of the same problem in a given study session, known as blocking.”

3. Retrieval practice

This may come as no surprise to many students and certainly not to anyone who reads this blog, its true testing actually improves memory. The process of reflecting back and having to retrieve a memory of something previously learned is very powerful.  There is also an added benefit, if you are told there is going to be a test, the increased test expectancy leads to better-quality encoding of the new information.

One concern is that while there is little doubt that retrieval practice works, there is some research to show that pressure, perhaps the result of test anxiety during retrieval can undermine some of the learning benefit.

“However, we know from a century of research that retrieving knowledge actually strengthens it.”

Part two, next month

I hope this insight into evidence based learning has been useful, next month I will cover Elaboration, Concrete examples and Dual coding.

And if you would like to find out more here is a link to the article that quotes much of the research to support these techniques.