Gagne’s style – Nine steps to delivery

Robert Gagne was an American educational psychologist who pioneered the science of instruction in the second world war working with the Army Air Corps, training pilots. His focus was on simplifying and explaining what he and others believed to be good instruction.

Like many academics he wrote and published papers on different areas, for example he developed a hierarchy of learning, similar to Bloom with behavioural aspects at the bottom and cognitive ones at the top. But he is probably most well-known for his Nine levels of learning or as it is referred to here, The nine steps of delivery.

Now the only problem with this is that there are nine steps and anyone who has read this blog before will know, nine is just to The answer is simple, chunk it down into smaller sections.

Why is this important?
Gagne’s objective was to provide a systematic process to help teachers and trainers better structure what they do in order to keep students engaged and help them retain knowledge. But the process he created also provides an insight as to how learning works and can be used by students to structure their own learning. Below are the nine steps broken down under three headings. As well as explaining how each step works, I will also add comments as to what it means for a student who might be studying on their own.


  1. Gaining attention
    Start the learning experience by gaining the attention of your learners. The change in stimulus tells them that learning will soon take place. For the student this means you need to create a break from what you are doing and get into a mood to start studying. This might involve going to the library or setting an alarm on your phone to create a trigger telling you something different is about to happen.
  1. Informing the learner of the objective
    Share the learning objective with students early on. What should they know at the end of the session that they didn’t before. For the student it’s important you also know what you are trying to learn, what will you be aware of at the end of this session that you don’t know now. It also helps if your aware of why its important e.g. maybe it’s a very popular exam area or is developed in more detail later so you need to learn it now.
  1. Stimulating recall of prior learning
    Relate the new learning back to something learned before or a similar experience your learners have had, this forms a link between the old and new. For the student this is a reflective process, how does this topic relate to what you have learned in the past, how does it fit in?

Instruction and practice

  1. Presenting the content
    Present the new content to the learners. For the student this is where you start reading or listening to the new content.
  1. Providing learning guidance
    Explain to the learners what something means by giving examples, highlight what’s difficult and what’s not. For the student this is where you have to rely on the instruction provided in the learning materials
  1. Eliciting performance
    Here the learner has to practice what they have been taught in order to demonstrate understanding. For the student this is the equivalent to attempting a question or by way of analogy, trying to turn the theory of how to bake a cake into a reality by actually baking one.

Assessment and transfer

  1. Providing feedback
    Provide guidance to the learner as to what the difference was between their answer and the correct one, what do they need to do to close that gap? For the student this is where it is helpful to work with others, perhaps you mark their answer and they mark yours. To follow the cake example, take it out of the oven and look at it, is it the right texture and colour, then taste it. What do you need to do to make it the best cake ever?
  1. Assessing the performance
    Assessing learner performance is usually demonstrated by asking them to take a test. For the student its very similar this time, take the test and see what score you get.
  1. Enhancing retention and transfer
    The learner now needs to demonstrate this by applying it to their job or by teaching others. This last stage often requires continual practice and feedback to become competent. For the student who thinks their objective is to do little more than pass the exam it may not seem important, however in the medium to long term applying learning is the main goal.

And that’s all you have to do, nine steps that break down instruction and in so doing providing a roadmap to effective study. It has been argued that the process doesn’t work so well for more creative subjects, after all it was designed around training airline pilots. However, it can teach you to fly and most importantly land a plane it’s probably good enough for most areas of learning.

The science of Learning – Top six proven study techniques (Part two )

Welcome to part two, exploring the facts and what really works in learning.


Eliot Hirshman defined elaboration as “a conscious, intentional process that associates to-be-remembered information with other information in memory. In other words adding something new to what you already know e.g. elaborating. There are a number of variations as to how this concept might be used but one is called elaborative interrogation, and involves students questioning the materials they are studying. This might be students asking “how and why” questions in groups and answering them either from their course materials or ideally memory. This technique can also be used by a student studying alone, outside of the classroom, a kind of loud self enquiry.

Although the science on exactly how effective some of these ideas are is not conclusive, I would argue that many teachers I have met learn a great deal by saying something out loud to a class, in some instances many times, and then asking themselves challenging questions, e.g. “if it works in this situation why won’t it work now”? The truth is it is often the student who asks the challenging question!

Concrete examples

Concrete examples make something easier to understand and remember, largely because the brain can both recognise and recall concrete words more readily than abstract ones. In addition it has been demonstrated that information that is more concrete and imageable enhances the learning of associations, even with abstract content.

What you have just read to a certain extent is a group of abstract words, easier for example, easier than what? But if we added that it was easier than eating an apple? Although the experience of eating an apple may vary, everyone knows what an apple looks, smells and tastes like.

A concrete term refers to objects or events we can see or hear or feel or taste or smell.

By using concrete examples it makes it much easier to concisely convey information, that can be remembered and visualised. It is a good example of Dual coding.

Dual coding

Few people would disagree with the idea that pictures are more memorable than words, this is referred to as the picture superiority effect. Dual coding supports this by suggesting that text when accompanied by complementary visual information enhances learning. It is important to be clear, dual coding is the use of both text and visuals, replacing a word with a picture is not the same.

In addition there is some evidence to suggest that by adding a movement such as drawing something rather than showing the static image can enhance the process even more.

One final point that I have written about many times before, duel coding should not be confused with learning styles. This is not suggesting that some people will “get” dual coding” because it fits with their learning styles, it works for everyone.

Well that’s it six of the top learning techniques that you can use with confidence and are proven to work.

See you next month, I am just off to enjoy a concrete experience, Clam Chowder on Pier 39.

The science of Learning – Top six proven study techniques (Part one)

Brain in jar

One of the most difficult questions to answer is – “How do you know”? This is because it challenges both the logic behind your thinking and the quality of information on which you based your statement or opinion. Is it possible you have taken reliable information and put it together in the wrong way or is the evidence supporting your argument questionable?

Saying something with confidence will lead people to believe that what you are saying is true but without real evidence it is still only an opinion.

The so called scientific method which introduced us to the idea of gathering evidence cannot be attributed to one individual, the high-profile contributors include Aristotle, Ibn al-Haytham, Descartes and Newton. It was clearly an organic process that Newton eloquently described as standing upon the shoulder of giants.

Regardless of the originator, the scientific method has changed the way we think and shaped much of the modern world, from discoveries in medicine, putting a man on the moon and the creation of the internet. But……Not Learning.

Learning science

Although still a relatively new field there are a group of individuals who include cognitive and computer scientists, linguists and educational phycologists who collectively call themselves Learning Scientists. By gathering evidence in the form of data about how students learn they have been able to draw conclusions that are “evidence based”. What can be proven and what cannot. For both students and teachers their findings should be essential reading.

One important point, this does not in any way detract from what a good teacher does, no more than offering advice to doctors on the evidence supporting the success of a new drug.

The top 6 evidence-based study techniques

1. Spaced practice (distributed)

Spaced practice is the exact opposite of cramming, you are effectively taking the same amount of time to study, just doing it over a longer period of time. The evidence shows that if you revisit what you have studied over time it boosts what is called your retrieval and storage strength but if you study in a short period of time, your retrieval strength improves but your storage strength reduces. One implication is that cramming can work but only if you want to retain information for a short period of time, to pass an exam for example. As such it is understandable why students do this, because they have proved in the past it was successful.  If, however you need that information for the next level of study, you may need to learn it all over again!

“The effect is simple: the same amount of repeated studying of the same information spaced out over time will lead to greater retention of that information in the long run, compared with repeated studying of the same information for the same amount of time in one study session.”

Watch this video, it’s an excellent summary.

2. Interleaving

Interleaving is simply studying different subjects or topics as opposed to studying one topic very thoroughly before moving to the next, this latter process is called blocking. However as with spaced practice students might find it harder (see desirable difficulty) because interleaving involves retrieval practice and is more difficult than blocked practice, but the knowledge is retained for far longer. One proven technique is for students to alternate between attempting a problem and viewing a worked example. This is much better than attempting to answer one question after another. Its simply about switching activity.

But be careful, interleaving is best done within a subject, don’t move from Chemistry to Art for example. Unfortunately we don’t have any evidence as to what the optimum time period should be, so that might have to come down to trial and error. If however its too short a time there is a danger you will effectively be multitasking, and as I have mentioned in a previous blog, that simply doesn’t work.

This video by brain hack is excellent

“Interleaving occurs when different ideas or problem types are tackled in a sequence, as opposed to the more common method of attempting multiple versions of the same problem in a given study session, known as blocking.”

3. Retrieval practice

This may come as no surprise to many students and certainly not to anyone who reads this blog, its true testing actually improves memory. The process of reflecting back and having to retrieve a memory of something previously learned is very powerful.  There is also an added benefit, if you are told there is going to be a test, the increased test expectancy leads to better-quality encoding of the new information.

One concern is that while there is little doubt that retrieval practice works, there is some research to show that pressure, perhaps the result of test anxiety during retrieval can undermine some of the learning benefit.

“However, we know from a century of research that retrieving knowledge actually strengthens it.”

Part two, next month

I hope this insight into evidence based learning has been useful, next month I will cover Elaboration, Concrete examples and Dual coding.

And if you would like to find out more here is a link to the article that quotes much of the research to support these techniques.