Lessons from lies – Fake news

There is little doubt that we live in an age with access to more information than any other. All you have to do is log onto your PC and type into Google whatever you want to know and within 0.28 seconds you will get 3.44 million results, it really is science fiction. But having lots of information isn’t the same as having reliable information, how do you know that what your reading is true?

Fake news and false information

Fake news is certainly not new, in 1835 it was reported in a New York newspaper that a telescope “of vast dimensions” could see what was happening on the moon. It caused a sensation and the paper’s circulation increased from 8,000 to more than 19,000. The only problem, it was a complete fiction or fake news concocted by the editor, Richard Adams Locke. It may not be new but fake news is certainly faster moving and far more prolific fuelled by the internet, the growth in social media, globalisation and a lack of regulation.

But before we go any further let’s take a step back and clarify what we mean by fake news. Firstly, there are completely false stories created to deliberately misinform, think here about the moon story although even that contained some facts. There was an astronomer called Sir John Herschel who did indeed have a telescope “of vast dimensions” in his South African observatory, but he did not witness men with bat wings, unicorns, and bipedal beavers on the moon’s surface. Secondly, stories that may have some truth to them, but are not completely accurate, a much more sophisticated and convincing version of the above and probably harder to detect.

We will leave aside the motives for creating fake news but they range from politics, to pranks and as was the case of Richard Adams Locke, commercial gain.

Here are a few headlines:

5G weakens the immune system, making us more vulnerable to catching the virus
If you can hold your breath for 10 seconds, then you don’t have the virus
Fuel pump handles pose a particularly high risk of spreading the Corona-19 infection
And more controversy, Health secretary Matt Hancock stating that testing figures had hit 122,347 on April 30

The first three are fake, the third is based on facts. Click here to make up your own mind as to its truth.

But why do we believe these stories?

Quick to judge A study from the University of Toulouse Capitole, found that when participants were asked to make a quick judgment about whether a news story was real or fake, they were more likely to get it wrong. This is somewhat worrying given the short attention span and patterns of behaviour displayed by those surfing the net.

We think more like lawyers than scientists – Commonly called confirmation bias, our ability to favour information that confirms our existing beliefs. Lawyers examine evidence with a preconceived objective, to prove their client’s innocence whereas scientists remain open minded, in theory at least. An interesting aspect of this is that well educated people may be more susceptible because they have the ability to harness far more information to support their opinion. This is a bias of belief not of knowledge.  

Illusory truth effect – This is the tendency to believe false information after repeated exposure. First identified in a 1977 study at Villanova University and Temple University. It would be wrong to ignore the man who many believe (wrongly) invented the term fake news, including himself, Donald Trump. He is a master of repetition, for example Trump used the expression “Chinese virus” more than 20 times between March 16 and March 30, according to the website Factbase.

Gullibility, the failure to ask questions We are prone to believe stories that “look right”, Psychologists refer to this as “processing fluency”. Experiments have found that “fluent information” tends to be regarded as more trustworthy and as such more likely to be true. Images are especially powerful, for example researchers have found that people believed that macadamia nuts were from the same family as peaches if there was a picture of a nut next to the text.

The same photo but from a different angle

Google it! but do so with care

Most educators will encourage students to become independent learners, be curious and ask questions, solve their own problems, it is one of the most powerful educational lessons, and as Nelson Mandela said, education can be used to change the world. But we need to be careful that what is learned is not just a bunch of facts loosely gathered to prove one person’s point of view. Mandela’s vision of changing the world through education was based on the education being broad and complex not narrow.

We are of course very fortunate to have such a vast amount of information from which to learn, but that curiosity needs to be tempered with a critical mind set. The questions asked should be thoughtfully constructed with knowledge of one’s own personal bias and the information analysed against the backdrop of the source of that information and possible motives of the authors

Guidelines for students using Google

1. Develop a Critical Mindset – this is the ability to think logically, figuring out the connections, being active rather than passive, challenging what you read against what you already know and perhaps most importantly challenging your own ideas in the context of the new information. Are you simply finding information to support your own views, an example of confirmation bias.

2. Check the Source and get confirmation – for websites always look at the URL for the identity of the organisation and the date of the story. Lots of fake news is news rehashed from the past to support the argument currently being made. What is the authority quoted, why not cut that from the story and paste into google to find out who else is using that information and in what context. Look for spelling mistakes and generalisations e.g. most people agree. These terms are vague and give the impression that this is a majority view.

3. Evaluate the evidence and don’t take images at face value – use your critical thinking skills to validate the evidence. Who is the authority quoted, do they have any reasons or motives for making these claims? Images as already mentioned are very powerful, but fake images are easy to create on the internet and a clever camera angle can easily mislead.

4. Does it make sense? – an extension of logical thinking but perhaps more emotional, how do you feel about this, what’s you gut instinct. The unconscious part of your brain can help make complex decisions sometimes more accurately than logical thought.

With large amounts of free knowledge, there are calls for schools to be doing more to better equip children to navigate the internet. In fact, back in 2017 the House of Lords published a report ‘Growing up with the internet’ which recommended that “Digital literacy should be the fourth pillar of a child’s education alongside reading, writing and mathematics”.

It’s not just school children that need this fourth pillar, we probably all do.

And of course the picture at the start of this blog is Fake!

Double entry bookkeeping replaced by internet

There is an interesting question being asked at the moment, given that fact-based knowledge is so accessible using the internet, is there a case for not teaching facts at all?

According to Don Tapscott, a consultant and speaker, who specialises in organisations and technology, memorising facts and figures is a waste of time because such information is readily available. It would be far better to teach students to think creatively so that they can learn to interpret and apply the knowledge they discover online.

“Teachers are no longer the fountain of knowledge, the internet is”
Don Tapscott

Is this the solution for educators with an over full curriculum, the result of having to continually add new content to ensure their qualification remains relevant and topical? Perhaps they can remove facts and focus on skills development? After all its skills that matter, knowing is useful but it’s the ability to apply that really matters …right?

What makes you an accountant

When you start to learn about finance, you will be taught a number of underpinning foundational subjects including, law, economics, costing and of course basic accounting. Sat stubbornly within the accounting section will be double entry bookkeeping. This axiom is fiercely protected by the finance community such that if anyone questions its value or challenges its relevance they will be met with pure contempt. And yet, is the knowledge as to how you move numbers around following a hugely simple rule i.e. put a number on one side and an equivalent on the other of any use in a world where most accounting is performed by computers and sophisticated algorithms? I am sure there will be similar examples from other professions and industries. The challenge being, do doctors really need to understand basic anatomy or lawyers read cases dating back to 1892?

“Everyone is entitled to his own opinion, but not to his own facts”
Daniel Patrick Moynihan

But Knowledge is power

Daniel T. Willingham is a psychologist at the University of Virginia and the author of a number of books including, why students don’t like school. His early research was on the brain, learning and memory but more recently he has focused on the application of cognitive psychology in K-16 education.

Willingham argues that knowledge is not only cumulative, it grows exponentially. In addition, factual knowledge enhances cognitive processes like problem solving and reasoning. How knowledge Helps.

Knowledge is cumulative – the more you know the more you can learn. Individual chunks of knowledge will stick to new knowledge because what you already know provides context and so aids comprehension. For example, knowing the definition of a bond ‘a fixed income instrument that represents a loan made by an investor to a borrower (prior knowledge), enables the student to grasp the idea that anything fixed has to be paid by the company (the lender) regardless of its profitability and this is the reason debt is considered risky. (new knowledge)

Knowledge helps you remember – the elaboration effect has featured in a previous blog. In essence it suggests that the brain finds it easier to remember something if it can be associated with existing information. Using the same example from above, it is easier to remember that bonds are risky if you already knew what a bond was.

Knowledge improves thinking – there are two reasons for this, firstly it helps with problem solving. Imagine you have a problem to solve, if you don’t have sufficient background knowledge, understanding the problem can consume most of your working memory leaving no space for you to consider solutions. This argument is based on the understanding that we have limited capacity in working memory (magic number 7) and so to occupy it with grasping the problem at best slows down the problem-solving process, but at worse might result in walking away with no solution. Secondly knowledge helps speed up problem solving and thinking. People with prior knowledge are better at drawing analogies as they gain experience in a domain. Research by Bruce Burns in 2004 compared the performance of top chess players at normal and blitz tournaments. He found that what was making some players better than others is differences in the speed of recognition, not faster processing skills. Players who had knowledge of prior games where far quicker in coming up with moves than those who were effectively solving the problem from first principle. Chess speed at least has a lot to do with the brain recognising pre learned patterns.

Skills are domain specific – not transferable

There is one other important lesson from an understanding of knowledge – skills are domain specific. The implication being that teaching “transferable skills” e.g. skills that can be used in different areas, communication, critical thinking etc doesn’t work. A skill (Merriam Webster) is the ability to use one’s knowledge effectively and readily in execution or performance. The argument being that in order to use knowledge effectively, it needs to be in a specific domain.
In July 2016 the Education Endowment Foundation in the UK released the results of a two-year study involving almost 100 schools that wanted to find out if playing chess would improve maths. The hypothesis was that the logical and systematic processes involved in being a good chess player would help students better understand maths i.e. the skills would transfer. The conclusion however found there were no significant differences in mathematical achievement between those having regular chess classes and the control group.

Long live double entry bookkeeping

This is an interesting topic and open to some degree of interpretation and debate but it highlights the difficult path curriculum designers have to tread when it comes to removing the old to make space for the new. In addition there is a strong argument to suggest that core principles and foundational knowledge are essential prerequisites for efficient learning.
But whatever happens, we need to keep double entry bookkeeping, not because knowing that every debit has a credit is important but it helps structure a way of thinking and problem solving that has enabled finance professional to navigate significant complexity and change since Luca Pacioli allegedly invented it in 1494.

And the case from 1893 – Carlill v Carbolic Smoke Ball Company